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Abstract
Leveraging lexical constraint is extremely signif-
icant in domain-specific machine translation and
interactive machine translation. Previous studies
mainly focus on extending beam search algorithm
or augmenting the training corpus by replacing
source phrases with the corresponding target trans-
lation. These methods either suffer from the heavy
computation cost during inference or depend on
the quality of the bilingual dictionary pre-specified
by the user or constructed with statistical machine
translation. In response to these problems, we
present a conceptually simple and empirically ef-
fective data augmentation approach in lexical con-
strained neural machine translation. Specifically,
we construct constraint-aware training data by first
randomly sampling the phrases of the reference as
constraints, and then packing them together into the
source sentence with a separation symbol. Exten-
sive experiments on several language pairs demon-
strate that our approach achieves superior transla-
tion results over the existing systems, improving
translation of constrained sentences without hurt-
ing the unconstrained ones.

1 Introduction
Lexically constrained translation [Hokamp and Liu, 2017;
Post and Vilar, 2018; Luong et al., 2015; Song et al., 2019],
the task of imposing pre-specified words and phrases in the
translation output (see Figure 1), has practical significance in
many applications. These include domain-specific machine
translation, where lexicons can be a domain terminology ex-
tracted from an in-domain dictionary [Arthur et al., 2016],
and interactive machine translation, where lexicons can be
provided by humans after reading a system’s initial output
[Koehn, 2009; Cheng et al., 2016]. In phrase-based statisti-
cal machine translation [Koehn et al., 2003], it is relatively
easy to restore these kinds of manual interventions. However,
in the paradigm of neural machine translation (NMT) [Bah-
danau et al., 2015; Vaswani et al., 2017], the task of lexically
constrained translation is not trivial.
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The network was also quick to apologize and released a statement .

该 频道 也 很快 做出 了 道歉 并 发布 了 声明 。

the channel also made an apology and issued a statement .

the channel also made a quick apology and issued a statement .

the network also made a quick apology and issued a statement .

+ quick

+ network

Input

Reference

Figure 1: A simple example of lexically constrained machine trans-
lation from Chinese to English. The first translation is uncon-
strained, whereas the second and third have one and two additional
constraint imposed.

As a result, a number of authors have explored methods for
lexically constrained NMT. These methods can be roughly di-
vided into two broad categories: hard and soft. In the hard
category, all constraints are ensured to appear in the out-
put sentence. They achieve this by designing novel decod-
ing algorithms, without modification to the NMT model or
the training process. Hokamp and Liu [2017] propose the
grid beam search (GBS) decoding algorithm. Post and Vi-
lar [2018] speed up over GBS by presenting the dynamical
beam allocation (DBA) algorithm. However, the computation
complexity of such decoding algorithms is still much higher
compared with conventional beam search.

Another direction achieves lexically constrained transla-
tion by modification to the NMT model’s training process.
These methods are “soft”, i.e., they cannot ensure all con-
straints to appear in the translation output. Luong et al. [2015]
use placeholder tags to substitute rare words on both source
and target sides according to a bilingual dictionary during
training. The model then learns to translate constrained words
by translating placeholder tags. Song et al. [2019]; Dinu
et al. [2019]; Wang et al. [2019] propose a data augmenta-
tion method to train the NMT model. They construct syn-
thetic parallel sentences by either replacing the correspond-
ing source words with the constraint or appending the con-
straint right after the corresponding source words. However,
a bilingual dictionary is essential at both training and infer-
ence time. Therefore, their performance relies heavily on the
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quality of the bilingual dictionary, and they can not translate
with non-consecutive constraint, i.e., the constraint that cor-
responds to non-consecutive source words.

In this paper, we propose a LExical-Constraint-Aware
(LeCA) NMT model by packing constraints and source sen-
tence together without using a bilingual dictionary. During
training, we sample pseudo constraints from the reference and
construct constraint-aware synthetic parallel corpus by ap-
pending the constraints after the source sentence with a sepa-
ration symbol. The motivation is to make the model learn to
utilize the lexicon constraints automatically without the pre-
specified aligned source words. During inference, the source
is similarly modified as a preprocessing step. By training on
a mixture of the original and synthetic corpus, the model can
perform well on the constrained case while maintaining the
performance on the unconstrained case. We evaluate the pro-
posed model on WMT De-En and NIST Zh-En News trans-
lation in both directions with different types of lexical con-
straints. Similar with the previous work [Song et al., 2019;
Dinu et al., 2019], our approach can not guarantee all con-
straints to be generated in the output, but experiments show
that the copy success rate is high: it is 96.4% ∼ 99.5% for
the WMT De-En task and 89.6% ∼ 98.4% for the NIST
Zh-En task. In addition, our model improves over the code-
switching baselines for all constraint types, and the improve-
ment is more than 3.5 BLEU points for reference constraint
and interactive constraint.1

2 Related Work
Recent work on lexically constrained NMT can be loosely
clustered into two categories: hard and soft. The hard ensures
all constraints to appear at the translation output. In contrast,
the soft category cannot make such guarantee.

Hard lexically constrained translation. Hokamp and
Liu [2017] propose the grid beam search (GBS) algorithm
for incorporating lexical constraints at decoding time. The
constraints are forced to be present in the translations. Post
and Vilar [2018] propose a faster algorithm over grid beam
search, namely, dynamical beam allocation (DBA). The de-
coding complexity is reduced from O(|T |kNC) to O(|T |k)
(|T | is the target sentence length, k is beam size, NC is the
number of constraints) by grouping together hypotheses with
the same number of constraints into banks and dynamically
dividing a fixed-size beam across these banks at each time
step. One problem of these methods is that they copy the lex-
icon constraints in exactly the same form to the output, mak-
ing it unsuitable to decode with noisy constraints. For exam-
ple, constraints with incorrect morphological form. Another
drawback is that the decoding speed is significantly reduced
compared with standard beam search.

Soft lexically constrained translation. Song et al. [2019]
create a synthetic code-switching corpus to augment the train-
ing data for NMT. The code-switching corpus is built by re-
placing the corresponding source phrase with the target con-
straint according to a bilingual dictionary. By training on a
mixture of original and synthetic parallel corpora, the model

1Our code is available at https://github.com/ghchen18/leca.

learns to translate code-switching source sentences at both
training and inference time. Concurrently, Dinu et al. [2019]
propose a similar approach to translate given terminology
constraints. The corresponding target terminology in the dic-
tionary is used to replace the source terminology or appended
right after the source one. Although translating fast, these
two methods use bilingual dictionary to construct training
data, thus their performance relies heavily on the quality of
the bilingual dictionary. In addition, at inference time, the
model will fail in the cases when constraints do not appear
in the bilingual dictionary or when the corresponding source
phrases are non-consecutive.

Different from the above approaches, we propose a lexical-
constraint-aware Transformer model without using a bilin-
gual dictionary, by simply packing constraints and source
sentence together with a separating symbol. Instead of speci-
fying the aligned source words for each constraint, our model
learns to utilize the constraint automatically without the ex-
plicitly alignment information. This simple approach can
carry out constrained NMT task with better performance in
terms of a combined metric based on accuracy, copy success
rate, and decoding speed.

3 Approach
3.1 Problem Statement
Suppose X = (x1, x2, · · · , xS) is the source sentence with
length S, Y = (y1, y2, · · · , yT ) is the target sentence with
length T . In conventional neural machine translation, the
model is trained with Maximum log-Likelihood Estimation
(MLE) method. The conditional probability of Y is calcu-
lated as follows:

p(Y|X; θ) =
T+1∏
t=1

p(yt|y0:t−1, x1:S ; θ). (1)

When lexical constraints are given, the neural machine trans-
lation problem can be defined as

p(Y|X,C; θ) =
T+1∏
t=1

p(yt|y0:t−1, x1:S ,C; θ), (2)

where C = (C1, C2, · · · , CN ) are the provided lexical con-
straints which are expected to appear in the translations, and
N is the number of constraints in C. Different from Hokamp
and Liu [2017] and Post and Vilar [2018], these constraints
are not forced to appear in the target sequence, i.e. hard con-
straints are not considered in our settings. The constraints are
given as suggestions in a soft manner. In real applications like
domain adaptation via terminology, we go through the source
sentence and give constraints according to a terminology dic-
tionary. Therefore, the order of constraints are likely to be the
same as their corresponding source phrases in the source sen-
tence, which could be different from the order the constraints
appear in the reference. So we say that the input constraints
are actually disordered.

The performance of constrained machine translation is
evaluated in three aspects.

1. Accuracy. The BLEU [Papineni et al., 2002] is used to
evaluate the correctness of translation.
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Figure 2: Transformer encoder embedding layer. A special symbol 〈sep〉and an additional learned segment embedding are added to distin-
guish the source and each constraint. The positional index of each constraint starts from a large enough number. The encoder input is the sum
of the three embeddings. These modifications help the LeCA better learn to translate with constraints.

2. Coverage. The copy success rate (CSR) is used to check
the percentage of constraints that are successfully gen-
erated in the translation.

3. Decoding speed. The time-averaged number of gener-
ated tokens in inference is used to indicate the time com-
plexity of the approach.

3.2 LExical-Constraint-Aware (LeCA) NMT
Given a triple of source sentence, constraints and target sen-
tence 〈X,C,Y〉, we define the training loss of the LeCA
model as:

L =
∑

log p(Y|X,C; θ)

=
∑

log p(Y|X̂; θ).
(3)

In the above equation, X̂ is a pseudo source sentence, which is
constructed by packing the source sentence X and each con-
straint Ci in the constraint set C together with a separating
symbol 〈sep〉 (See the example in Figure 2):

X̂ =
[
X, 〈sep〉 , C1, 〈sep〉 , C2, ..., 〈sep〉 , CN , 〈eos〉

]
, (4)

where 〈eos〉 is the end of sentence token.
To model such pseudo source sentence X̂, we modify the

input representation of the encoder to differentiate the source
sentence and each constraint, and add a pointer network to
strengthen copying through locating source-side constraints.
Input representation. Inspired by BERT [Devlin et al.,
2019], we add a learned segment embedding to each token
at the encoder embedding layer for the LeCA model. The
encoder embedding layer is composed of three components:
token embedding, positional embedding and segment embed-
ding, as shown in Figure 2. We differentiate the source sen-
tence and each constraint in three ways. First, we separate
them with a special symbol (〈sep〉). Second, the positional
index of each constraint starts from the same number that is
larger than the maximum source sentence length. Finally, we
use different segment embedding for the source sentence and
each constraint. For a given token, its input embedding is
constructed by summing the corresponding token, positional
and segment embeddings.
Pointer network. Following Gulcehre et al. [2016] and
Song et al. [2019], we add a pointer network to strengthen
copying through locating source-side constraints in the LeCA
model (LeCA+Ptr). At decoding time step t, the final token

probability p(yt|y<t, X̂) is a weighted sum of the token dis-
tribution in predictive mode and copy mode. The probabil-
ity distribution over target-side vocabulary in predictive mode
ppredictt is calculated using the decoder output softmax. The
token probability distribution in copy mode pcopyt is set us-
ing averaged multi-head attention weights of the last decoder
layer. If a target token y is in the source sentence, the prob-
ability pcopyt (y) is the attention weight for the correspond-
ing source position. Otherwise, the probability is set as zero.
Combining pcopyt and ppredictt , we gain a new distribution over
the target vocabulary:

p(yt|y<t, X̂) = (1− gt) pcopyt + gt p
predict
t , (5)

where gt ∈ [0, 1] is a gate that controls the contribution of
these two probability distributions at time step t. We calculate
gt with a feed forward neural network from the context vector
ct and the decoder hidden state at the last layer zt:

ct =
Ŝ∑

s=1

αt,shs

gt = FeedForward(ct, zt), (6)

where hs is the encoder hidden state at position s of the last
layer, αt,s is the averaged attention weight at the last decoder
layer for source position s at decoding time step t, and Ŝ is
the length of the source sentence X̂.

3.3 Training
In common NMT settings, we are given a set of parallel
source-target sentence pairs at training time, without explic-
itly provided constraints. In order to train the LeCA model,
we propose a way to construct constraints for each parallel
sentence pair, following previous work [Hokamp and Liu,
2017; Post and Vilar, 2018; Song et al., 2019].

Specifically, we dynamically sample the constraints from
the gold reference during training. For simplicity, first we
randomly set the number of constrained words k. Then we
randomly sample k target words from the reference. We
group these words into phrases, and use these phrases as con-
straints. We exclude high frequency words from sampling
given that they are well learned by the model and less likely
to be given as constraints in practice. Finally, we shuffle the
constraints to simulate training with disordered constraints.
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To maintain the translation performance for unconstrained
cases, we leave a proportion of source sentences as uncon-
strained, i.e., we do not sample constraints in such cases. To
be consistent with the constrained cases, we still use the seg-
ment embedding and pointer network. Apart from the above,
we follow the standard MLE training procedure.

4 Experiments
4.1 Setup
Data. We conduct experiments on German-English and
Chinese-English translation tasks in both directions. For
the De-En task, we use WMT16 news data as train-
ing corpus, newstest2013 as the development set and
newstest2014 as the test set. For the Zh-En task, we
use 1.25M parallel sentences extracted from NIST corpora2

as the training data. The NIST MT04 dataset serves as the
development set, and a combination of NIST MT02, 03, 05,
06, 08 dataset serve as the test set. For the NIST development
set and test set, we only choose the first sentence out from
the four English references. The German and English corpus
is tokenized using the Moses tokenizer [Koehn et al., 2007].
Chinese sentences are segmented by an open-source toolkit
jieba3. Byte-pair encoding (BPE) [Sennrich et al., 2016] with
32K joint merge operations for both language pairs.

Model. We implement LeCA and all the baselines based on
Transformer [Vaswani et al., 2017] using fairseq4 [Ott et
al., 2019]. We use the base Transformer model described
in Vaswani et al. [2017] but share all embeddings. The max-
imum number of constrained phrases is set as 50. We use
Adam [Kingma and Ba, 2015] and label smoothing for train-
ing. The learning rate is 0.0005 and warmup step is 16000.
All the drop-out probabilities are set to 0.3. Maximum update
number is 100k for the De-En language pair and 60k for the
Zh-En language pair.

Evaluation. In practice, constraints are extracted from an
in-domain dictionary or provided by human translator in in-
teractive machine translation. Previous work evaluate lexi-
cal constrained translation in a simulation approach, where
constraints are sampled from the reference sentence. Exist-
ing evaluation approaches construct test set through various
means, which can be divided into three main categories:

• Dictionary constraint [Song et al., 2019; Dinu et al.,
2019; Hasler et al., 2018; Wang et al., 2019], where each
constraint and its corresponding source phrase is a pair
in the bilingual dictionary;

• Reference constraint [Post and Vilar, 2018], where the
constraints are randomly sampled from the reference;

• Interactive constraint [Hokamp and Liu, 2017; Hasler
et al., 2018], where the constraints are those phrases
from the reference, that fail to be translated in the un-
constrained translation result.

2The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, LDC2004T07, LDC2004T08 and LDC2005T06

3https://github.com/fxsjy/jieba
4https://github.com/pytorch/fairseq

To have comprehensive and systematic evaluations, we test
LeCA and all the baselines on four types of test set, i.e. clean
test set without constraints and the three constrained test sets
above. For dictionary constraint, we follow [Song et al.,
2019] to extract constraints on the test set. For reference con-
straint, we follow the procedure in Section 3.3 to extract con-
straints on the test set. The number of constrained words for
each sentence pair is sampled from 0 to 4 following the distri-
bution [0.4, 0.1, 0.2, 0.2, 0.1]. For interactive constraint, we
follow Hokamp and Liu [2017] to simulate Pick-Revise for
interactive post editing [Cheng et al., 2016], first we trans-
late in a constraint-free setting, then we use the same method
to sample constraints from the reference, except that words
from the constraint-free hypothesis are excluded. Since dif-
ferent models produce different unconstrained translations,
the constraints for different models are different. To eliminate
the impact of sampling, we repeat experiments on interac-
tive constraint five times and report the averaged scores. All
constraints are constructed before applying BPE for all con-
straint types. We use beam search with a beam size of 10. We
report case-sensitive BLEU score using sacreBLEU5 [Post,
2018]. The copy success rate (CSR) is calculated at token
level after removing the BPE symbol. The decoding speed
is tested on a single GeForce RTX 2080 Ti GPU and is av-
eraged over five runs. Statistical significance is tested with
compare-mt toolkit [Neubig et al., 2019] for 1000 resamples
and p = 0.05.

Baselines. To make the evaluation convincing, we follow
previous work to re-implement three existing methods for
comparison. These methods are:

• Grid Beam Search (GBS) [Hokamp and Liu, 2017],
which extends beam search to generate pre-specified
lexical constraints.

• Code-Switching (CS) [Song et al., 2019], which trans-
lates with constraints by training a model on synthetic
code-switching corpus.

• Code-Switching with Pointer Network (CS+Ptr) [Song
et al., 2019], which investigates incorporating the copy
mechanism into the decoder in the code-switching
method.

For reference constraint and interactive constraint, we use
fast align [Dyer et al., 2013] to find the correspond-
ing source words. We also evaluate on vanilla Trans-
former (TRANS) for reference.

4.2 Results
We present the BLEU scores of the proposed model LeCA
and all the baselines in Table 1 for all the language pair-
directions and all the constraint types. It is clear that LeCA
and LeCA+Ptr outperform all the baselines, especially for ref-
erence constraint and interactive constraint, and LeCA+Ptr
obtains the best performance. For dictionary constraint, the
average performance of LeCA+Ptr is 0.7 BLEU higher com-
pared with CS and 0.6 with CS+Ptr. For reference constraint,

5BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+
version.1.3.7
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Model
Without Constraints Dictionary Constraint Reference Constraint Interactive Constraint

De-En En-De Zh-En En-Zh De-En En-De Zh-En En-Zh De-En En-De Zh-En En-Zh De-En En-De Zh-En En-Zh

TRANS 31.2 27.3 23.4 24.5 − − − − − − − − − − − −

GBS 31.2 27.3 23.4 24.5 30.2 28.1 22.8 23.0 33.7 32.4 25.1 26.1 37.7 32.3 27.4 28.8

CS 31.0 26.8 23.4 23.8 31.8 27.8 23.9 24.5 31.8 28.5 23.4 24.3 31.5 30.6 24.8 25.7

+ Ptr 30.6 26.3 23.2 23.5 32.0? 27.8 24.1 24.6 28.7 28.2 23.3 24.3 31.2 30.9 25.4 26.0

LeCA 30.7? 27.1? 23.4 24.4? 31.5 28.1 24.3 25.3? 35.6 33.0? 26.4 28.3 38.8 36.4 28.1 30.1?

+ Ptr 31.0 27.4 23.7 24.3 32.3 28.8 24.6 25.1 36.1 33.3 26.9 27.8 38.2 36.9 28.9 29.9

Table 1: BLEU results of constrained NMT on four types of test sets. The best performance among each column is underlined. Scores with
asterisk indicates no significant difference with LeCA+Ptr results after statistic significance test. LeCA+Ptr gets overall best performance on
lexically constrained test sets while keeping the performance on original test sets without constraints.

Model
Dictionary Constraint Reference Constraint Interactive Constraint

De-En En-De Zh-En En-Zh De-En En-De Zh-En En-Zh De-En En-De Zh-En En-Zh

CS 98.4% 97.5% 95.1% 95.7% 86.3% 89.0% 85.9% 87.0% 86.1% 88.8% 87.3% 87.5%

+ Ptr 99.2% 98.3% 96.5% 96.9% 85.1% 87.6% 85.8% 86.9% 85.3% 87.3% 87.7% 87.9%

LeCA 99.4% 99.0% 97.3% 97.6% 97.2% 97.3% 90.7% 92.9% 93.2% 94.0% 82.7% 85.8%

+ Ptr 99.5% 99.4% 98.4% 98.2% 98.3% 98.7% 94.5% 94.6% 96.4% 97.1% 89.6% 89.6%

Table 2: Results of copy success rate (CSR). The best CSR among each column is underlined. Our method is compared with code switching,
another “soft” approach. Pointer network improves the CSR for LeCA. LeCA+Ptr gets highest CSR among all models on all test sets.

Model TRANS GBS CS CS+Ptr LeCA LeCA+Ptr

words/sec 2998 11 2474 2328 2390 2078

Table 3: Decoding speed (words/sec) of different models. We eval-
uate the decoding speed on the test set of WMT De-En translation
with beam size of 10. The batch size for GBS is 1 and 100 for oth-
ers. For TRANS, we report the constraint-free result, while for the
other models, we report the result with dictionary constraint.

the average performance of LeCA+Ptr is 4.0 BLEU higher
compared with CS and 4.9 with CS+Ptr. For interactive con-
straint, the average performance of LeCA+Ptr is 5.3 BLEU
higher compared with CS and 5.1 with CS+Ptr. The CS and
CS+Ptr methods work well for dictionary constraint. How-
ever, their performance on the other two types of constraints
are comparatively worse. This can be explained since the dic-
tionary constraint is more consistent with how the constraints
are constructed at training time for CS and CS+Ptr. In con-
trast, LeCA and LeCA+Ptr are very robust, i.e., they work
well across all constraint types.

We also observe that all models preserve their strength on
translating unconstrained source sentences. As shown in the
column without constraint, all models perform similarly as
the vanilla Transformer in a constraint-free setting.

In Table 2, we compare the copy success rate of our meth-
ods with the baseline CS methods. We do not list the CSR of
GBS because it imposes hard constraints and the CSR is al-
ways 100%. Although our methods do not guarantee all con-
straints to be generated in the output, we observe that the CSR

is high. The average CSR of LeCA+Ptr is 98.9% for dictio-
nary constraint, 96.53% for reference constraint and 93.18%
for interactive constraint, significantly improving over the
CS and CS+Ptr methods. We also observe that applying the
pointer network with LeCA can lead to higher CSR, indicat-
ing that the pointer network can strengthen copying through
locating source-side constraints.

Table 3 compares the decoding speed of different models.
It shows that LeCA and LeCA+Ptr are slightly slower than
CS and CS+Ptr. The reason could be that LeCA methods
introduce an additional segment embedding and the source
sentence in LeCA methods is longer than that in CS methods
(the source phrases are kept in LeCA methods, but not in CS
methods). However, given the translation quality improve-
ment and the robustness of LeCA methods, such computation
overhead is acceptable.

4.3 Analysis
Ablation study. We conduct ablation study on WMT
En→De translation with reference constraint to study the
effect of different model components. For the LeCA+Ptr
model, we gradually remove the pointer network (− Ptr),
the segment embedding (− segment emb.) and replace the
proposed novel positional embedding with consecutive posi-
tional embedding that does not differentiate source sentence
and constraints (− novel positional emb.). The results are
shown in Table 5. We note that pointer network helps to im-
prove the copy success rate. Segment embeddings can im-
prove the performance in terms of BLEU. The novel posi-
tional embedding that separately indexes source sentence and
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Figure 3: Attention map in LeCA model. We masked the attention weights for 〈sep〉, 〈eos〉and period punctuation in this attention map.

Item Translations

Input 但是在其启蒙教练张亚杰反复做工作后，张彬彬又回到了厦门队。

w/o cons. however , after his mongolian coach zhang yajie repeatedly worked , zhang binbin returned to the xiamen team .

+ enlightening however , after his enlightening coach zhang yajie repeatedly worked , zhang binbin returned to the xiamen team .

+ enlightening + efforts but after his enlightening coach zhang yajie made repeated efforts , zhang binbin returned to the xiamen team .

ref. But after the repeated efforts of her enlightening teacher zhang yajie, Zhang Binbin returned to Xiamen team .

input 然而，尽管公开和解，但双方仍存在重大分歧。

w/o cons. however , despite open reconciliation , major differences still exist between the two sides .

+ significant + public however , there are significant differences between the two sides despite public reconciliation .

ref. still , despite the public display of reconciliation , the two still have major differences .

Table 4: Lexically constrained translation examples with the LeCA model. w/o cons. denotes translations without constraints, ref. is the
reference sentence.

Model refer. cons. CSR

LeCA+Ptr 33.3 98.7%

− Ptr 33.0 97.3%

− segment emb. 31.7 97.4%

− novel positional emb. 25.3 75.5%

Table 5: Results of ablation study in En-De test set.

each constrain is the key for high copy success rate. When
combining novel positional embedding, segment embedding
and pointer network, our model obtains the best performance.

Case study. We include two examples of translations with
the method LeCA in Table 4. It shows that our method suc-
cessfully incorporates constraints into the translation output.
Since our methods learn to incorporate the constraints with-
out explicit alignment, we suspect that the encoder has the
ability to align each target constraint to its corresponding
source phrase. Therefore, we analyze the attention maps of
our methods and show one example in Figure 3. This exam-
ple as well as manual inspection of others confirm our sus-
picion. In addition, we also find that when producing con-
strained words, the decoder tends to attend to the correspond-

ing constraint at the source side, instead of the aligned source
phrase. We leave more in-depth analysis as future work.

5 Conclusion
In this paper, we propose a novel lexical-constrained-aware
(LeCA) NMT model that can incorporate lexical constraints
in the translation accurately and efficiently. Our model mod-
ifies the input representation of the Transformer encoder and
augments training data by appending constraints after the
source sentence with a separation symbol. Experiments on
WMT De-En and NIST Zh-En show that our model signifi-
cantly improves the performance over baselines, with mini-
mal additional decoding time. As LeCA can generate various
translations given different constraints, we see the exploration
of diverse neural machine translation as a clear avenue for fu-
ture work.
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stantin, and Evan Herbst. Moses: Open source toolkit
for statistical machine translation. In Proceedings of ACL,
pages 177–180, 2007.

[Koehn, 2009] Philipp Koehn. A process study of computer-
aided translation. Machine Translation, 23:241–263,
2009.

[Luong et al., 2015] Thang Luong, Ilya Sutskever, Quoc Le,
Oriol Vinyals, and Wojciech Zaremba. Addressing the rare
word problem in neural machine translation. In Proceed-
ings of ACL, pages 11–19, 2015.

[Neubig et al., 2019] Graham Neubig, Zi-Yi Dou, Junjie Hu,
Paul Michel, Danish Pruthi, and Xinyi Wang. compare-
mt: A tool for holistic comparison of language generation
systems. In Proceedings of NAACL, 2019.

[Ott et al., 2019] Myle Ott, Sergey Edunov, Alexei Baevski,
Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for se-
quence modeling. In Proceedings of NAACL, 2019.

[Papineni et al., 2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. BLEU: a method for au-
tomatic evaluation of machine translation. In Proceedings
of ACL, 2002.

[Post and Vilar, 2018] Matt Post and David Vilar. Fast lexi-
cally constrained decoding with dynamic beam allocation
for neural machine translation. In Proceedings of NAACL,
pages 1314–1324, 2018.

[Post, 2018] Matt Post. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on Ma-
chine Translation, pages 186–191, 2018.

[Sennrich et al., 2016] Rico Sennrich, Barry Haddow, and
Alexandra Birch. Neural machine translation of rare words
with subword units. In Proceedings of ACL, 2016.

[Song et al., 2019] Kai Song, Yue Zhang, Heng Yu, Weihua
Luo, Kun Wang, and Min Zhang. Code-switching for en-
hancing NMT with pre-specified translation. In Proceed-
ings of NAACL, pages 449–459, 2019.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NeurIPS, pages 5998–6008, 2017.

[Wang et al., 2019] Tao Wang, Shaohui Kuang, Deyi Xiong,
and António Branco. Merging external bilingual pairs into
neural machine translation. ArXiv, abs/1912.00567, 2019.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3593


	Introduction
	Related Work
	Approach
	Problem Statement
	LExical-Constraint-Aware (LeCA) NMT
	Training

	Experiments
	Setup
	Results
	Analysis

	Conclusion

